QTL Analysis Using SNP Markers Developed by Next-Generation Sequencing for Identification of Candidate Genes Controlling 4-Methylthio-3-Butenyl Glucosinolate Contents in Roots of Radish, Raphanus sativus L
نویسندگان
چکیده
SNP markers for QTL analysis of 4-MTB-GSL contents in radish roots were developed by determining nucleotide sequences of bulked PCR products using a next-generation sequencer. DNA fragments were amplified from two radish lines by multiplex PCR with six primer pairs, and those amplified by 2,880 primer pairs were mixed and sequenced. By assembling sequence data, 1,953 SNPs in 750 DNA fragments, 437 of which have been previously mapped in a linkage map, were identified. A linkage map of nine linkage groups was constructed with 188 markers, and five QTLs were detected in two F(2) populations, three of them accounting for more than 50% of the total phenotypic variance being repeatedly detected. In the identified QTL regions, nine SNP markers were newly produced. By synteny analysis of the QTLs regions with Arabidopsis thaliana and Brassica rapa genome sequences, three candidate genes were selected, i.e., RsMAM3 for production of aliphatic glucosinolates linked to GSL-QTL-4, RsIPMDH1 for leucine biosynthesis showing strong co-expression with glucosinolate biosynthesis genes linked to GSL-QTL-2, and RsBCAT4 for branched-chain amino acid aminotransferase linked to GSL-QTL-1. Nucleotide sequences and expression of these genes suggested their possible function in 4MTB-GSL biosynthesis in radish roots.
منابع مشابه
Small variation of glucosinolate composition in Japanese cultivars of radish (Raphanus sativus L.) requires simple quantitative analysis for breeding of glucosinolate component
To reveal varietally differing glucosinolate (GSL) contents in radish (Raphanus sativus L.) cultivated in Japan, the total and individual GSLs of 28 cultivars were analyzed using high-performance liquid chromatography. In these cultivars, GSL types including three aliphatic GSLs (glucoraphenin, glucoerucin, and 4-methylthio-3-butenyl GSL (4MTB-GSL)) and three indolyl GSLs (4-hydroxyglucobrassic...
متن کاملA 2-Oxoglutarate-Dependent Dioxygenase Mediates the Biosynthesis of Glucoraphasatin in Radish.
Glucosinolates (GSLs) are secondary metabolites whose degradation products confer intrinsic flavors and aromas to Brassicaceae vegetables. Several structures of GSLs are known in the Brassicaceae, and the biosynthetic pathway and regulatory networks have been elucidated in Arabidopsis (Arabidopsis thaliana). GSLs are precursors of chemical defense substances against herbivorous pests. Specific ...
متن کاملGlucosinolate accumulation in three important radish (Raphanus sativus) cultivars
Radish, Raphanus sativus, is an important dietary vegetable in Asian countries, especially in China, Japan, and Korea. In this study, the variation of glucosinolate (GSL) contents among three radish cultivars, including Seo Ho, Man Tang Hong, and Hong Feng No. 1 were evaluated. While significantly different levels of 13 GSLs were observed in both the skin and flesh of these radish cultivars, th...
متن کاملTranscriptome Profiling of Radish (Raphanus sativus L.) Root and Identification of Genes Involved in Response to Lead (Pb) Stress with Next Generation Sequencing
Lead (Pb), one of the most toxic heavy metals, can be absorbed and accumulated by plant roots and then enter the food chain resulting in potential health risks for human beings. The radish (Raphanus sativus L.) is an important root vegetable crop with fleshy taproots as the edible parts. Little is known about the mechanism by which radishes respond to Pb stress at the molecular level. In this s...
متن کاملQuantitative Trait Loci for Morphological Traits and their Association with Functional Genes in Raphanus sativus
Identification of quantitative trait loci (QTLs) governing morphologically important traits enables to comprehend their potential genetic mechanisms in the genetic breeding program. In this study, we used 210 F2 populations derived from a cross between two radish inbred lines (Raphanus sativus) "835" and "B2," including 258 SSR markers were used to detect QTLs for 11 morphological traits that r...
متن کامل